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Citizen science is fundamentally shifting the future of biodiversity research. But although citizen science observations are contributing an 
increasingly large proportion of biodiversity data, they only feature in a relatively small percentage of research papers on biodiversity. We 
provide our perspective on three frontiers of citizen science research, areas that we feel to date have had minimal scientific exploration but that 
we believe deserve greater attention as they present substantial opportunities for the future of biodiversity research: sampling the undersampled, 
capitalizing on citizen science’s unique ability to sample poorly sampled taxa and regions of the world, reducing taxonomic and spatial biases 
in global biodiversity data sets; estimating abundance and density in space and time, develop techniques to derive taxon-specific densities from 
presence or absence and presence-only data; and capitalizing on secondary data collection, moving beyond data on the occurrence of single 
species and gain further understanding of ecological interactions among species or habitats. The contribution of citizen science to understanding 
the important biodiversity questions of our time should be more fully realized.
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Citizen science, or community science, is a rapidly   
 advancing field, with an ever-increasing number of 

projects (Jordan et  al. 2015, Welvaert and Caley 2016, 
Pocock et al. 2017). Many of these projects are focused on 
biodiversity, generally aiming to put points on a map for a 
given taxon (Pocock et al. 2017). We are also in the middle 
of a big data revolution in ecology and conservation (Farley 
et al. 2018) with increasingly available remote-sensing data 
(Kwok 2018) and trait databases (Schneider et al. 2019). For 
example, citizen science is largely responsible for the Global 
Biodiversity Information Facility (GBIF) having accumu-
lated approximately 1.4 billion biodiversity records globally 
(Chandler et al. 2017a). As of March 2020, data from GBIF 
has been used in 4307 research papers. Collectively, these 
data are expanding the spatial and temporal scale of ques-
tions that can be answered in ecology, conservation, and 
natural resource management (McKinley et al. 2017).

Despite the opportunities, there are still obstacles blocking 
widespread use of these data within both academic research 
and development of government policies (Burgess et  al. 
2017, Troudet et al. 2017, Young et al. 2019). Chief among 
these, unsurprisingly, are questions surrounding data qual-
ity, which have been discussed in depth elsewhere (Kosmala 
et al. 2016, Aceves-Bueno et al. 2017). In the present article, 

we do not focus on data quality, but rather focus on a series 
of opportunities that make use of the particular qualities of 
citizen science data. These opportunities could allow pro-
fessional scientists to build tools both to better direct the 
incredible amount of citizen science effort and to better use 
the rapidly accumulating data sets in biodiversity research 
(Tulloch et al. 2013b).

There are many avenues for increasing the utility of 
citizen science research (Newman et al. 2012, Bonney et al. 
2014). In the present article, we focus on three frontiers that 
we believe present substantial opportunities for progress 
to advance the field of citizen science and, in particular, to 
answer fundamental questions important to understanding 
and conserving biodiversity: (1) using citizen science to 
increase representation of undersampled regions and taxa, 
(2) developing pipelines to estimate species’ abundance in 
space and time, and (3) capitalizing on secondary data col-
lection (i.e., data held in the user contributions but not part 
of the initial aim of the contribution). These perspectives 
primarily apply to semistructured and unstructured citi-
zen science projects (e.g., iNaturalist, eBird, FrogID, iSpot) 
that are largely opportunistic in nature (Shirk et  al. 2012, 
Danielsen et  al. 2014). We treat each of these perspectives 
in turn, by summarizing the current state of literature and 
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providing illustrative examples of how these are being tack-
led. We conclude by providing a series of key objectives and 
scientific questions for the future of citizen science within 
each of these frontiers.

Sampling the undersampled
Most citizen science data—across and within projects—have 
redundancies and gaps in taxonomic focus, space, and time 
(Boakes et  al. 2010, Bayraktarov et  al. 2019). Understanding 
these limitations is extremely important for appropriate use of 
citizen science data (Burgess et al. 2017). However, many of the 
redundancies and gaps in citizen science data sets (i.e., taxo-
nomic, spatial, and temporal biases) also exist in professional 
science data sets (Boakes et  al. 2010). Professional science is 
often highly constrained by funding, logistics, and time, lead-
ing to incomplete biodiversity data sets. In some instances, it is 
possible that citizen science may do a better job of sampling at 
least some parts of the world’s biodiversity. We suggest that the 
future of citizen science research should further capitalize on 
three areas in which citizen science is likely to have invaluable 
contributions to understanding biodiversity and informing 
conservation: sampling biodiversity on private land, advanc-
ing biodiversity understanding in developing countries and 
remote areas, and sampling underrepresented taxa.

Biodiversity on private lands may differ from that on pub-
lic lands (Scott et al. 2001) and most endangered species rely, 
in part, on habitats on private land—many entirely so (Bean 
and Wilcove 1997). Given the large proportion of land that 
is privately owned (e.g., approximately 60% of the United 
States, Hilty and Merenlender 2003; 63% of Australia, ABS 
2002; and higher in other parts of the world, Scott et  al. 
2001), sampling biodiversity on private lands is essential to 
monitor trends in species’ distributions and population sta-
tus. Professional science is not effective at sampling private 
lands (Hilty and Merenlender 2003), because gaining access 
is often time consuming and difficult. Citizen science, how-
ever, is uniquely positioned to sample biodiversity on private 
lands—leveraging public citizens and community members 
to collect large amounts of data, including from their own 
backyards. As an example, FrogID—a national citizen sci-
ence project focused on recording frogs in Australia (Rowley 
et  al. 2019)—has 92% of their records from private lands 
(from 2017–2019). Citizen science targeting private land is 
most likely to benefit from backyard contributions, often 
in residential areas (e.g., Cooper et al. 2007). For example, 
project FeederWatch focuses on backyard birdwatching 
in the United States, using semiautomated filters to help 
both participants and researchers have confidence in the 
data being collected (Bonter and Cooper 2012). Whereas 
Gardenwatch, ran by the British Trust for Ornithology in the 
United Kingdom, focuses on different missions for individu-
als to submit data on birds, invertebrates, and mammals in 
their backyards (BTO 2020). However, for larger tracts of 
land (e.g., agriculture, resource extraction), citizen scientists 
are likely to face similar access constraints as professional 
biodiversity monitoring.

Similar biases for citizen science and professional sci-
ence also apply at the global scale (Yesson et  al. 2007, 
Boakes et  al. 2010), because there are many remote or 
isolated areas that are sparsely populated and rarely visited 
by either traditional or citizen scientists. Many parts of the 
world simply do not have the economic resources to fund a 
scientific establishment. As a result, global scientific data-
bases often have regions of severe data paucity (figure 1). 
For example, global plant trait data sets have sparse infor-
mation for Siberia, Greenland, northern Canada, arid 
Australia, parts of Saharan and Central Africa, and much 
of the Amazon (Kattge et  al. 2011). Similarly, GBIF 
has sparse information for Russia, Greenland, northern 
Canada, Antarctica, parts of Saharan and Central Africa, 
and for much of the world’s oceans. Undersampled areas 
that are highly diverse, highly endemic, poorly known, 
or contain highly threatened species or habitats should 
remain a priority for professional scientists (Tulloch et al. 
2013a, Bayraktarov et  al. 2019). But in combination with 
professional science, citizen science can help these devel-
oping and remote regions to quantify their biodiversity 
without necessarily building traditional research institu-
tions (e.g., field stations, museums, and universities) in 
situ. This is parallel to the way that development of mobile 
phone networks allowed large parts of the world to move 
from no telecommunications to high connectivity without 
the establishment of a traditional landline infrastructure 
(Andrachuk et al. 2019). For example, through a collabora-
tive citizen science project in remote Northern Territory, 
Australia, the Ngukurr community helped to build knowl-
edge about the local biodiversity, including discovering 
new species, identifying populations of threatened species, 
and documenting culturally significant habitats (https://
youtu.be/EAnVoA1PB5k). The Custodians of Rare and 
Endangered Wildflowers (SANBI 2020) program supports 
citizen scientists working in remote parts of South Africa 
to survey wildflowers. 

In addition to providing local people with the oppor-
tunity to document their biodiversity, citizen science is 
well positioned to make use of records from holidaying 
biodiversity enthusiasts (Mieras et al. 2017). Ecotourism—
especially to remote parts of the world—is a growing 
industry (Das and Chatterjee 2015) that has the potential 
to be combined with citizen science data collection. For 
example, ecotourists have helped monitor cetaceans in 
Hawaii by photographing cetaceans while on whale-watch-
ing tours (Currie et al. 2018), and the CoralWatch citizen 
science project (https://coralwatch.org) has successfully 
recruited ecotourists to participate in coral reef surveys, 
with some in relatively remote regions in the world such as 
Indonesia (Marshall et al. 2012). This ecotourism, coupled 
with artificial intelligence, can now analyze millions of 
social media posts or online photo repositories to glean 
information about biodiversity (e.g., wildme.org; Menon 
et  al. 2016). Participation with local tourism authorities 
and managers (e.g., lodge owners, tour guide operators) 
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in these undersampled parts of the world could provide 
benefits for opportunistic citizen science observations. 
Furthermore, some companies (e.g., adventurescientists.
org) are now targeting dedicated volunteers who are willing 
to go to remote parts of the world to collect data for specific 
scientific projects—a unique form of ecotourism blended 
with citizen science.

Another mechanism by which undersampled regions 
can be boosted is through global citizen science projects—
those that target observations from anywhere in the world, 
such as iNaturalist (www.inaturalist.org). iNaturalist, for 
example, collates photos of any living organism in the 
world, allowing for community validation of these photos. 
Although not formally quantified, there is likely an increase 
in citizen science observations in these remote and devel-
oping parts of the world—contributed both by local natu-
ralists and by ecotourists (Pocock et al. 2019). We suggest 
that experts should optimize their time spent identifying 
opportunistic observations—for example, in iNaturalist 

(Tulloch et al. 2013a, Callaghan et al. 2019a)—by prioritiz-
ing verification of records from poorly sampled regions 
(e.g., the tropics, pacific islands) rather than only verifying 
additional records from well-sampled regions (e.g., United 
States, Europe; Orr et al. 2020).

Taxonomic bias is an inherent feature of organismal 
research, including biodiversity records, with the represen-
tation of taxa in the literature and in biodiversity databases 
failing to reflect their representation in nature (May 1988, 
Bonnet et al. 2002, Troudet et al. 2017). In general, inverte-
brates tend to be underrepresented in biodiversity databases, 
and within vertebrates, birds and mammals tend to be over-
represented (May 1988, Troudet et al. 2017). Some reasons 
for such taxonomic bias are obvious—some organisms are 
more difficult to study than others because they are difficult 
to locate or identify. We argue that citizen science projects 
are well suited to minimize some of these biases. First, iden-
tification of any given taxa is no longer dependent on local 
experts and can be globally exported through platforms such 

Figure 1. (a) The total number of records for the top 25 classes present in GBIF, demonstrating the potential for citizen 
science to capitalize on those undersampled taxa. (b) The total number of records in GBIF, by country, on a log scale, 
showing the bias toward well-sampled areas (e.g., United States, Europe, Australia). (c) The total number of records in 
GBIF, standardized by the area of the country, again demonstrating those parts of the world that could most benefit from 
increased biodiversity knowledge gained through citizen science. (d) The total number of records in GBIF per capita, 
showing that parts of Europe have the most observations per capita in the world.
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as iNaturalist (Orr et al. 2020). For example, there should be 
increased effort in identifying photographs to a species level 
by both professional scientists and other experts for given 
taxa that are not often identified to species (e.g., only 32% of 
polychaetes on iNaturalist are identified to species; figure 1). 
Second, societal preferences greatly influence taxonomic 
biases (Czech et  al. 1998, Troudet et  al. 2017) but profes-
sional scientists can work through citizen science initiatives 
to help minimize and overcome these biases in our biodi-
versity knowledge. Citizen science has been used to map 
species distributions of saproxylic beetles (Zapponi et  al. 
2017) and to identify introduced species of Hymenoptera in 
New Zealand (Ward 2014), both examples of uncharismatic 
invertebrates. Another example is from Jones and colleagues 
(2019), who highlight that “iNaturalist was instrumental in 
facilitating the discovery” of a rare crayfish that was able 
to successfully be given conservation status, and they state 
that “had it not been for iNaturalist, its presence may have 
remained undetected.”

One potential avenue for minimizing taxonomic, and 
other, biases in citizen science projects is the gamification 
of citizen science—the process by which participants are 
rewarded for their sightings in a game-like fashion (e.g., 
by receiving badges). Gamification may lead to increased 
retention of current participants, but also recruit new par-
ticipants to a particular citizen science project (Bowser et al. 
2013, Chandler et  al. 2017b). As an example, to minimize 
taxonomic biases inherent in citizen science projects, par-
ticipants could be encouraged to find or identify underrep-
resented taxa (e.g., invertebrates).

Estimating species’ abundances in space and time
A key benefit of massive citizen science data sets is the abil-
ity to monitor biodiversity in space and time at a frequency 
and geographic extent that has not been possible before 
(Schmeller et al. 2009, Tulloch et al. 2013b, Chandler et al. 
2017a). This is key for both detecting range expansions 
and contractions and understanding the many ways that 
individual species are responding to the changing world. 
Because of conservation implications and basic research 
importance, understanding biodiversity in space and time 
has received a tremendous amount of research interest 
both related (Chandler et al. 2017a) and not related (Gotelli 
and Colwell 2001) to citizen science. Such understanding 
has traditionally been based on traditional data sets (e.g., 
museum collections, intensive survey data), however, the 
increasingly dense sampling of citizen science data sets in 
both space and time offer both new opportunities and new 
statistical challenges.

A key future prospect is to estimate organism abun-
dance—with associated uncertainty—in space and time. 
For semistructured projects that provide complete snap-
shots of the biodiversity encountered on a survey (e.g., 
eBird, www.ebird.org; Reef Life Survey, www.reeflifesurvey.
com), it is straightforward to model abundance of one 
species at one point in time or space relative to itself at 

another point in time or space, and indeed, this has already 
been done for many well-sampled North American bird 
species (e.g., https://ebird.org/science/status- and-trends; 
Fink et al. 2010). The key information to estimate relative 
abundance is the existence of true absences in the data 
set; absences allow modeling of when a species both was 
and was not encountered in space and time. In this class 
of data, absences are inferred from complete checklists, in 
which observers submit lists of all species they were able to 
identify along with a proxy for effort, allowing for model-
ing of the probability of presence or absence (e.g., Johnston 
et  al. 2020). But these citizen science data have variations 
in observer skill and effort, as well as observer bias in when 
and where to sample—problems often true for profession-
ally collected scientific data too. There are already statistical 
approaches to minimize these biases, such as hierarchical 
modeling or spatial and temporal subsampling (Gonsamo 
and D’Odorico 2014, Johnston et  al. 2020), and these are 
continuously being improved.

In contrast, modeling abundance is more difficult if start-
ing from presence-only data, such as those traditionally gen-
erated by museum or herbarium records, and more recently 
many opportunistic citizen science projects (e.g., iNaturalist, 
FrogID, iSpot, and many others). The lack of absences in 
these data requires additional analysis steps, and methods to 
use this class of data more fully are being rapidly developed 
(Fithian et al. 2015, Meyer et al. 2015, Roberts et al. 2017). 
The most powerful of these new approaches is informing 
the inference from presence-only data sets with high-quality 
information from another source including plot, distance 
sampling, or remote-sensing data (He et  al. 2015). In gen-
eral, this approach works by statistically combining multiple 
data sources with different characteristics, such as low qual-
ity presence-only citizen science data in combination with 
high quality professional survey data (Pacifici et  al. 2017). 
For example, Fithian and colleagues (2015) showed that by 
pooling presence only and presence or absence data together 
in a complex statistical model, many of the biases in the 
presence-only data can be minimized. In another example, 
Pacifici and colleagues (2017) showed that models of brown-
headed nuthatch distributions are improved when incorpo-
rating both citizen science data in addition to structured 
survey data into a synthetic understanding of the species’ 
range. This promising area of exchange between professional 
field ecologists, citizen scientists, and statisticians shows 
how professional scientists could maximize the impact of 
their limited time in the field by generating data sets spe-
cifically designed to unlock aspects of the massive potential 
of citizen science data. This will require both a full under-
standing of the statistical approaches used to integrate data 
(Fithian et al. 2015, Pacifici et al. 2017) and forward-looking 
statistical models that can dynamically predict where the 
most valuable data should come from for increased confi-
dence around specific scientific objectives (e.g., Callaghan 
et al. 2019a, 2019b). If models can be continuously updated 
with data from both citizen scientists and professionals, 
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then data gaps in space and time can be identified and filled 
(Callaghan et al. 2019b).

Citizen science observations are continuously and glob-
ally contributed, in a near real-time fashion. For example, 
in May 2019, eBird received 7.5 observations per second 
throughout the entire month. This is a rate of data collec-
tion never before seen in ecology and biodiversity research. 
Species distribution models and abundance models, how-
ever, are often treated as static objects in the current scien-
tific literature. As statistical power increases and researchers 
are able to estimate biodiversity changes in space and time 
with greater certainty, automated or semiautomated pipe-
lines are being developed that are dynamically updated as 
data are contributed to the data set (Callaghan et al. 2019a). 
This near real-time approach will have the added benefit of 
detecting sudden declines more quickly (Inger et al. 2015), 
and the temporal scale of updated trends and status will 
be relevant to a given taxon and likely dependent on the 
rate of the data being submitted. For example, GreenMaps 
used broadscale data from GBIF on plant occurrences to 
develop modeled range maps for more than 190,000 spe-
cies, which can then be validated by citizen scientists on 
the basis of the occurrence of each species in the field. This 
approach can be automated to continuously update the 
range maps, providing increased confidence surrounding a 
given species modeled range map. This is similar to global 
aggregation of all biodiversity records from museum, her-
barium, government, and citizen science sources into GBIF. 
Another example is an automated method developed by the 
US National Park Service in combination with iNaturalist, 
which uses citizen science observations integrated with 
species lists for National Parks to detect species’ responses 
to climate change (Boydston et al. 2017). Pipelines should 
be prepared on cloud computing platforms as it is becom-
ing increasingly difficult to download, let  al.one analyze, 
the large data sets created by citizen science projects on a 
personal computer.

Capitalizing on secondary data collection
Biodiversity research using citizen science has to date 
largely been focused on recording taxa in time and space—
that is, putting biodiversity points on a map (e.g., Adesh 
et  al. 2019, Humphreys et  al. 2019). In addition to this 
main objective of points on a map, many citizen science 
records, particularly those relying on physical evidence 
(e.g., photographs or video or audio recordings), contain 
valuable secondary data such as information about habi-
tat associations or species interactions. We define species 
observations submitted to citizen science platforms (e.g., 
iNaturalist, Macaulay Library) with the intention of putting 
a point on the map as the primary data. Secondary data is 
any additional information incidentally captured with that 
primary observation. Image-based records potentially con-
tain a vast amount of information about species interac-
tions with the natural and human environment additional 
to the primary observation.

Behavior, interspecific interactions, condition (e.g., breed-
ing or health status), traits of an individual (e.g., phe-
notypes), microhabitat information, or the presence of 
additional species (e.g., co-occurrence) are examples of sec-
ondary data found in citizen science observations (figure 2). 
For example, automatic identification of individual animals 
has been used to understand the biology, habitat use, and 
population dynamics of whale sharks (Diamant et al. 2018, 
Norman et al. 2017, McCoy et al. 2018), identify individual 
cetaceans (Weideman et  al. 2017), and reveal site fidelity 
in tiger sharks (Paxton et  al. 2019). Internet images have 
been used to study commensal relationships between birds 
and herbivorous mammals (Mikula et  al. 2018), bird–bird 
associations (Mikula and Tryjanowski 2016), and associa-
tions between plant species and pollinating insects (Bahlai 
and Landis 2016, Gazdic and Groom 2019). Leighton and 
colleagues (2016) used Internet images to study the distri-
bution of white morphs of black bears, the distribution of 
color variants of black sparrowhawks and barn owls, and 
the hybridization coloration of carrion and hooded crows. 
Photographs uploaded to iNaturalist have been used to 
study variation in the wing patterns of damselflies across 
the species’ geographic extent (Drury et  al. 2019). The 
concept of harvesting secondary data from citizen science 
photographs is similar to the varied unanticipated uses of 
traditional museum collections (e.g., DNA, understanding 
DDT prevalence in egg shells) that have been fundamental 
for ecology and conservation (e.g., Suarez and Tsutsui 2004, 
Heberling and Isaac 2017). Even without DNA technology 
fully developed when many museum specimens were origi-
nally collected, the technological revolution in DNA analy-
ses have found historical museum specimens instrumental. 
Photographs contributed by citizen scientists will likely yield 
similar results, although they are currently difficult to auto-
matically process.

As quantities of biodiversity data continue to grow expo-
nentially (Farley et  al. 2018), it is important that robust, 
open-access infrastructure is implemented to allow appro-
priate filtering and management of these data (Bayraktarov 
et  al. 2019). For example, tools should be implemented to 
allow identifications to be either shared among citizen scien-
tists (i.e., “crowdsourcing”), reducing the effective workload, 
or fully automated using machine learning techniques. One 
such filtering tool is the “Project” feature on iNaturalist. 
Projects allow the collation of data, allowing grouping by 
location, taxon or a combination of both. This collation can 
occur automatically using the observation’s metadata (e.g., 
GPS coordinates), or manually by individual users. The lat-
ter represents a form of crowdsourcing as the onus of filter-
ing is on the many observers themselves instead of a single 
researcher. A recent study in North America, for example, 
identified bird collision hotspots and informed decisions on 
mortality prevention through building retrofitting (Winton 
et al. 2018). The data for this study were collated through an 
iNaturalist project (www.inaturalist.org/projects/bird-win-
dow-collisions), a framework without which data collation 
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would have been impractical, given there are around 5 
million observations of birds on iNaturalist (Van Horn 
et al. 2018). Automated image classification is being imple-
mented across a wide range of projects to extract ecologi-
cally valuable information from imagery efficiently and cost 
effectively (Weinstein 2018). Wildbook is an example open-
source platform designed to identify individual organisms 
on the basis of natural markings using deep convolutional 
neural network machine learning (http://wildbook.org). 
Expanding and replicating automated image classification 
tools such as those developed by Wildbook is therefore a 
priority for expediting the collation and analysis of citizen 
science biodiversity data.

Conclusions
In the present article, we highlight three important future 
directions for citizen science—among many possible direc-
tions—that will help to increase the utility of citizen science 

data for biodiversity research in the future. Some limitations 
facing citizen science that we address in the present article 
include strong societal preferences toward charismatic flora 
and fauna, a lack of taxonomic expertise in specific taxa to 
identify images, a lack of funding and technical expertise 
for citizen science practitioners to develop cloud comput-
ing pipelines, and a substantial cost and investment by 
government and other funding sources to develop auto-
mated image recognition technology to harvest secondary 
data. We believe that the examples presented above help to 
illustrate that focused collaborations between citizen sci-
ence participants and professional scientists can overcome 
these limitations and truly maximize the potential of citizen 
science data.

As these three frontiers continue to be developed, 
there are a myriad of scientific questions that can be 
better addressed. In the present article, we highlight six 
such objectives—two pertaining to each of the three 

Figure 2. Examples of the diversity of secondary data that can be extracted from biodiversity observations. (a) Community 
composition: A single image shows the presence of eastern pomfred (Schuettea scalaripinis), yellowtail scad (Trachurus 
novaezelandiae), grey nurse shark (Carcharias taurus) and painted trumpetfish (Aulostomus chinensis). (b) Species 
interactions: a jumping jack ant (Myrmecia nigrocincta) is preying on a seed bug (Nysius sp.). (c) Species interaction and 
phenology: gray hairstreak (Strymon melinus) feeding on a flowering bulltongue arrowhead (Sagittaria lancifolia). (d) 
Commensalism: Willie Wagtail (Rhipidura leucophrys) foraging for insects from the back of a domestic sheep (Ovis aries) 
and collecting nesting material.
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frontiers—that we believe will benefit from advances in 
each of the respective frontiers.

Sampling the undersampled.  If citizen scientist can sample 
enough private land, then we will gain an increased under-
standing of the role private lands play in biodiversity conser-
vation (e.g., Bean and Wilcove 1997). If citizen science and 
ecotourism can be better linked, then ecotourism projects 
can both gain valuable data for citizen science projects and 
bring ecotourism to remote areas with flow-on effects for 
conservation (e.g., Orams 1995).

Estimating species’ abundances in space and time.  If professional 
scientists can build data sets that complement citizen science 
data, we can identify high priority sites and species that can 
be used to identify species trends more quickly (Bayraktarov 
et al. 2019). If there are further developments of semiauto-
mated or automated pipelines to interact with citizen sci-
entists in near real time then the collective effort of citizen 
scientists will be able to reduce redundancies and gaps in the 
data collected (Callaghan et al. 2019a, 2019b).

Capitalizing on secondary data collection.  If species interactions 
can be quantified from citizen science photographs at scale, 
then we can start to better understand the co-occurrence of 
species in time and space, highlighting key taxa for conserva-
tion (e.g., pollination ecology; Domroese and Johnson 2017). 
If a formal review of the secondary data that has to date been 
harvested from citizen science photographs is conducted, 
then we can begin to fully understand the potential these data 
hold for ecology and conservation across taxa and projects.

Citizen science is currently seeing a rapid increase in 
contributions from volunteers with the number of citizen 
science projects, and therefore, biodiversity observations 
are growing exponentially (Pocock et al. 2017). We believe 
that it is time to move past the focus on the limitations of 
these data (after all, no data are perfect), and begin to take 
advantage of the extraordinary opportunities these data 
present (Burgess et al. 2017, Tulloch et al. 2013b). If profes-
sional scientists develop the right tools—presented in the 
article around three frontiers—citizen science data can be 
an important part of future advances in ecology, conserva-
tion, and biogeography (McKinley et al. 2017), dramatically 
advancing our understanding of global biodiversity.
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